• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Piao, Xinglin (Piao, Xinglin.) | Hu, Yongli (Hu, Yongli.) (学者:胡永利) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才) | Gao, Junbin (Gao, Junbin.)

收录:

EI Scopus SCIE PubMed

摘要:

The emerging low rank matrix approximation (LRMA) method provides an energy efficient scheme for data collection in wireless sensor networks (WSNs) by randomly sampling a subset of sensor nodes for data sensing. However, the existing LRMA based methods generally underutilize the spatial or temporal correlation of the sensing data, resulting in uneven energy consumption and thus shortening the network lifetime. In this paper, we propose a correlated spatio-temporal data collection method for WSNs based on LRMA. In the proposed method, both the temporal consistence and the spatial correlation of the sensing data are simultaneously integrated under a new LRMA model. Moreover, the network energy consumption issue is considered in the node sampling procedure. We use Gini index to measure both the spatial distribution of the selected nodes and the evenness of the network energy status, then formulate and resolve an optimization problem to achieve optimized node sampling. The proposed method is evaluated on both the simulated and real wireless networks and compared with state-of-the-art methods. The experimental results show the proposed method efficiently reduces the energy consumption of network and prolongs the network lifetime with high data recovery accuracy and good stability.

关键词:

wireless sensor networks data collection low rank matrix approximation

作者机构:

  • [ 1 ] [Piao, Xinglin]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Yongli]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Yanfeng]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Gao, Junbin]Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia

通讯作者信息:

  • 孙艳丰

    [Sun, Yanfeng]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Pingleyuan 100, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SENSORS

年份: 2014

期: 12

卷: 14

页码: 23137-23158

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:258

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 41

SCOPUS被引频次: 50

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:300/4609347
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司