• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dong, Hongying (Dong, Hongying.) | Cao, Wanlin (Cao, Wanlin.) (学者:曹万林) | Bian, Jianhui (Bian, Jianhui.) | Zhang, Jianwei (Zhang, Jianwei.) (学者:张建伟)

收录:

EI Scopus SCIE PubMed

摘要:

In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

关键词:

concrete compressive strength finite element method (FEM) analysis fire resistance high-temperature test recycled aggregate concrete (RAC) column temperature field

作者机构:

  • [ 1 ] [Dong, Hongying]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Cao, Wanlin]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Jianwei]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Bian, Jianhui]Tianjin Cement Ind Design & Res Inst Co Ltd, Tianjin 300400, Peoples R China

通讯作者信息:

  • 曹万林

    [Cao, Wanlin]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

MATERIALS

年份: 2014

期: 12

卷: 7

页码: 7843-7860

3 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:256

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 29

SCOPUS被引频次: 33

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1146/2906195
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司