• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Xingwei (Liu, Xingwei.) | Liu, Zhongliang (Liu, Zhongliang.) (学者:刘中良) | Li, Yanxia (Li, Yanxia.)

收录:

EI Scopus SCIE

摘要:

Supersonic separator is a new technology based on the adiabatic expansion of swirling gas flow, and at present it has demonstrated great application potential in separating and processing droplet liquid contained in natural gas. However, its coefficient of performance is still low and there seems to be a large gap in the method that evaluates the separation efficiency in a satisfactory manner. In order to promote the wide application of this technology in the dehydration field, it is necessary to find a new and feasible approach that can be used to predict the flow characteristic and separation performance inside a supersonic separator. In this paper, a comprehensive three-dimensional fluid numerical model to study the flow behavior and separation efficiency in a supersonic separator was established coupled with the discrete particle model (DPM). The mixture of air and water droplets was chosen as working fluid. The gas phase was modeled with compressible Navier-Stokes equations for two-phase flow and the RSM turbulence model was taken into account. The droplet phase was modeled with the discrete particle model (DPM), in which the droplets are assumed to have the same sphere shape and ignore the phase transition and nucleation process. A pilot test facility was carried out to validate the numerical model. The experimental results not only indicate that the new dehydration device can efficiently separate the liquid droplets from wet gas, but also prove that the numerical results were great agreements with the experimental results. Furthermore, based on the proposed numerical approach, the gas-droplet turbulent flow structures were predicted, the effects of different structure parameters and operation conditions on the separation efficiency were also investigated. The current works settle a foundation for further explorations on the supersonic gas-liquid separation flows inside a supersonic separator as well as the possible new applications.

关键词:

DPM model experimental test separation efficiency supersonic separator

作者机构:

  • [ 1 ] [Liu, Xingwei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zhongliang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Yanxia]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 刘中良

    [Liu, Zhongliang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SEPARATION SCIENCE AND TECHNOLOGY

ISSN: 0149-6395

年份: 2014

期: 17

卷: 49

页码: 2603-2612

2 . 8 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:195

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:138/3275508
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司