• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Li, Wei (Li, Wei.) | Han, Honggui (Han, Honggui.) (学者:韩红桂)

收录:

EI Scopus SCIE CSCD

摘要:

It is difficult to measure the online values of biochemical oxygen demand (BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T-S fuzzy neural network (TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods. (C) 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

关键词:

T-S fuzzy neural network Wastewater treatment K-means clustering Biochemical oxygen demand

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Wei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Honggui]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHINESE JOURNAL OF CHEMICAL ENGINEERING

ISSN: 1004-9541

年份: 2014

期: 11-12

卷: 22

页码: 1254-1259

3 . 8 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:258

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 40

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:119/3911441
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司