• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Qi (Zhang, Qi.) | Gao, Bin (Gao, Bin.) | Gu, Kaiyun (Gu, Kaiyun.) | Chang, Yu (Chang, Yu.) (学者:常宇) | Xu, Jinchao (Xu, Jinchao.)

收录:

EI Scopus SCIE PubMed

摘要:

BJUT-II VAD (Beijing University of Technology ventricular assist device II) is a novel left ventricular assist device. Because of the special connection between the pump and native heart, the hemodynamic effects of BJUT-II VAD on coronary artery are still unclear. Hence, numerical simulations have been conducted to clarify changes in hemodynamic effects of different support modes. A patient-specific left coronary arterial geometric model is reconstructed based on the computed tomography (CT) data. Three support modes, "constant speed mode," "co-pulse mode," and " counter pulse mode," are used in this study. The wall shear stress (WSS), wall shear stress gradient (WSSG), cycle-averaged wall shear stress (avWSS), oscillatory shear index (OSI), and the flow pattern are calculated to evaluate the hemodynamic states of coronary artery. The computational results demonstrate that the hemodynamic states of coronary artery are directly affected by the support modes. The co-pulse modes could achieve the highest blood perfusion (constant speed: 153 ml/min vs. co-pulse: 775 ml/min vs. counter pulse: 140 ml/min) and the highest avWSS (constant speed: 18.1 Pa vs. co-pulse: 42.6 Pa vs. counter pulse: 22.6 Pa). In addition, both the WSS and WSSG at the time of peak blood velocity under the constant speed mode are lower than those under other two support modes. In contrast, the counter pulse mode generates the highest OSI value (constant speed: 0.365 vs. co-pulse: 0.379 vs. counter pulse: 0.426). BJUT-II VAD under co-pulse mode may have benefits for improving coronary perfusion and preventing the development of atherosclerosis; however, the constant speed mode may have benefit for preventing the development of plaque vulnerability.

关键词:

computational fluid dynamics coronary artery cycle-averaged wall shear stress oscillatory shear index wall shear stress gradient

作者机构:

  • [ 1 ] [Zhang, Qi]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China
  • [ 2 ] [Gao, Bin]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China
  • [ 3 ] [Gu, Kaiyun]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China
  • [ 4 ] [Chang, Yu]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China
  • [ 5 ] [Xu, Jinchao]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China

通讯作者信息:

  • 常宇

    [Chang, Yu]Beijing Univ Technol, Sch Life Sci & BioEngn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ASAIO JOURNAL

ISSN: 1058-2916

年份: 2014

期: 6

卷: 60

页码: 643-651

4 . 2 0 0

JCR@2022

ESI学科: CLINICAL MEDICINE;

ESI高被引阀值:164

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:868/2910083
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司