• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhuo, Li (Zhuo, Li.) | Cheng, Bo (Cheng, Bo.) | Zhang, Jing (Zhang, Jing.)

收录:

EI Scopus SCIE

摘要:

"Curse of Dimensionality" is one of the important problems that Content-Based Image Retrieval (CBIR) confronts. Dimensionality reduction is an effective method to overcome it. In this paper, six commonly-used dimensionality reduction methods are compared and analyzed to examine their respective performance in image retrieval. The six methods include Principal Component Analysis (PCA), Fisher Linear Discriminant Analysis (FLDA), Local Fisher Discriminant Analysis (LFDA), Isometric Mapping (ISOMAP), Locally Linear Embedding (LLE), and Locality Preserving Projections (LPP). For comparison, Scale Invariant Feature Transform (SIFT) and color histogram in Hue, Saturation, Value (HSV) color space are firstly extracted as image features, meanwhile SIFT feature extraction procedure is optimized to reduce the number of SIFT features. Then, PCA, FLDA, LFDA, ISOMAP, LLE, and LPP are respectively applied to reduce the dimensions of feature vectors, which can be used to generate vocabulary trees. Finally, we can process large-scale image retrieval based on the inverted index built by vocabulary trees. In the experiments, the performance of various dimensionality reduction methods are analyzed comprehensively by comparing the retrieval performance, advantages and disadvantages, computational complexity and time-consuming of image retrieval. Through a series of experiments, we can conclude that dimensionality reduction method of LLE and LPP can effectively reduce computational complexity of image retrieval, while maintaining high retrieval performance. (C) 2014 Elsevier B.V. All rights reserved.

关键词:

Vocabulary tree Large-scale image retrieval HSV histogram OPTIMIZED SIFT Dimensionality reduction

作者机构:

  • [ 1 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Cheng, Bo]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, 100 Ping Leyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2014

卷: 141

页码: 202-210

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:188

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 40

SCOPUS被引频次: 44

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:131/3774827
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司