• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han Honggui (Han Honggui.) (学者:韩红桂) | Li Ying (Li Ying.) | Qiao Junfei (Qiao Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

In this paper, an effective strategy for fault detection of sludge volume index (SVI) sensor is proposed and tested on an experimental hardware setup in waste water treatment process (WWTP). The main objective of this fault detection strategy is to design a system which consists of the online sensors, the SVI predicting plant and fault diagnosis method. The SVI predicting plant is designed utilizing a fuzzy neural network (FNN), which is trained by a historical set of data collected during fault-free operation of WWTP. The fault diagnosis method, based on the difference between the measured concentration values and FNN predictions, allows a quick revealing of the faults. Then this proposed fault detection method is applied to a real WWTP and compared with other approaches. Experimental results show that the proposed fault detection strategy can obtain the fault signals of the SVI sensor online. (C) 2014 Elsevier Ltd. All rights reserved.

关键词:

Fault detection Waste water treatment process Bulking sludge Fuzzy neural network Sludge volume index

作者机构:

  • [ 1 ] [Han Honggui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Li Ying]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China
  • [ 3 ] [Qiao Junfei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han Honggui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMPUTERS & ELECTRICAL ENGINEERING

ISSN: 0045-7906

年份: 2014

期: 7

卷: 40

页码: 2216-2226

4 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:188

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 49

SCOPUS被引频次: 62

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:298/3911670
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司