• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

冷强奎 (冷强奎.) | 李玉鑑 (李玉鑑.)

收录:

EI Scopus PKU CSCD

摘要:

组合凸线性感知器(Multiconlitron)是用来构造分片线性分类器的一个通用理论框架,对于凸可分和叠可分情况,分别使用支持凸线性感知器算法(Support conlitron algorithm, SCA)和支持组合凸线性感知器算法(Support multiconlitron algorithm, SMA)将两类样本分开。本文在此基础上,提出了一种基于极大切割(Maximal cutting)的组合凸线性感知器构造方法。该方法由两阶段训练构成,第一阶段称为极大切割过程(Maximal cutting process, MCP),通过迭代不断寻求能够切开最多样本的线性边界,并因此来构造尽可能小的决策函数集,最大程度减少决策函数集中线性函数的数量,最终简化分类模型。第二阶段称为边界调整过程(Boundary adjusting process, BAP),对MCP 得到的初始分类边界进行一个二次训练,调整边界到适当位置,以提高感知器的泛化能力。数值实验说明,此方法能够产生更为合理的分类模型,提高了感知器的性能。同其他典型分片线性分类器的性能对比,也说明了这种方法的有效性和竞争力。

关键词:

极大切割 分片线性分类器 泛化能力 组合凸线性感知器 两阶段训练

作者机构:

  • [ 1 ] [冷强奎]北京工业大学
  • [ 2 ] [李玉鑑]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

自动化学报

ISSN: 0254-4156

年份: 2014

期: 4

页码: 721-730

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 2

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:216/5021650
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司