收录:
摘要:
基于深度图像的室内场景理解是计算机视觉领域中的前沿问题。针对三维室内场景中平面较多的特性,提出一种基于高斯混合模型聚类的深度数据分割方法,实现对场景数据的平面提取。首先将Kinect获取的深度图像数据转换为离散三维数据点云,并对点云数据作去噪和采样处理;在此基础上计算所有点的法向量,利用高斯混合模型对整个三维点云的法向集合聚类,然后利用随机抽样一致性算法对各个聚类进行平面拟合,由每个聚类得到若干平面,最终把整个点云数据分割为一些平面的集合。实验结果表明,该方法得到的分割区域边界准确,分割质量较高。提取出的平面集合为以后的室内对象识别和场景理解工作奠定了较好的基础。
关键词:
通讯作者信息:
电子邮件地址: