• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Diao, Y. H. (Diao, Y. H..) | Liu, Y. (Liu, Y..) | Zhao, Y. H. (Zhao, Y. H..) (学者:赵耀华) | Wang, S. (Wang, S..)

收录:

EI Scopus SCIE

摘要:

In this study, experimental investigations regarding the heat transfer performance of an evaporator with capillary wick are presented. The capillary wick structure is composed of sintered multilayer copper mesh. The multilayer copper mesh was sintered on the copper plate. With different combinations of mesh screens, the wick thickness of mesh 140 ranged from 0.6 to 1.0 mm, and those of meshes 60 and 140/60 were both 1.0 mm. The operating pressures used in this study were 0.86 x 10(5), 0.91 x 10(5), 0.96 x 10(5), 1.01 x 10(5), and 2.0 x 10(5) Pa. The experimental results indicate that the heat transfer performance was strongly dependent on the thickness of the sintered mesh structure and on the mesh size. The operating pressure also has a strong influence on the evaporation/boiling heat transfer performance of a mesh structure sintered using a single mesh size. However, it was also observed that the evaporation/boiling heat coefficient increased with an increase in the thickness of the capillary wick structure, which is less than 1.0 mm. The experimental results further illustrate that the composite sintered mesh structure was capable of properly enhancing the heat transfer performance, especially under high pressure. The maximum enhancement was 31.98%.

关键词:

evaporation/boiling heat transfer heat transfer performance operating pressure sintered mesh structure

作者机构:

  • [ 1 ] [Diao, Y. H.]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Y.]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao, Y. H.]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, S.]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Diao, Y. H.]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME

ISSN: 0022-1481

年份: 2014

期: 8

卷: 136

ESI学科: ENGINEERING;

ESI高被引阀值:123

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:6505/2951343
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司