• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

姚长青 (姚长青.) | 杜永萍 (杜永萍.) (学者:杜永萍)

收录:

CQVIP PKU CSSCI

摘要:

面向大规模专利文本数据的处理过程中,特征降维对于有效消除无关和冗余特征,并进一步提高学习任务的效率具有重要的作用。本文在专利数据聚类过程中,采用了基于信息熵进行特征选择,并利用潜在语义索引(LSI)的方法实现了特征降维。在利用降维技术基础上,将K-means算法与基于密度的DBSCAN算法相结合,改进了K-means算法初始聚类中心的选择方式,将其应用于专利文本聚类。t检验的实验结果表明,改进后的K-means算法的聚类结果性能显著提高。

关键词:

K-means 聚类算法 降维

作者机构:

  • [ 1 ] 中国科学技术信息研究所
  • [ 2 ] 北京工业大学计算机学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

情报学报

年份: 2014

期: 05

卷: 33

页码: 491-497

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:724/3706801
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司