• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Xiuli (Du, Xiuli.) (学者:杜修力) | Jin, Liu (Jin, Liu.) (学者:金浏) | Ma, Guowei (Ma, Guowei.)

收录:

EI Scopus SCIE

摘要:

Chloride-induced rebar corrosion is a common degradation process for concrete infrastructures, which is a practical concern in coastal areas, It is essential to study the chloride diffusivity behavior in concrete. Considering the concrete heterogeneity, a meso-scopic numerical model based on the finite-element method is developed for the simulation of chloride diffusivity. Concrete is regarded as a heterogeneous material consisting of three components, i.e., aggregate, mortar matrix and the Interfacial Transition Zones (ITZs). A random aggregate structure of concrete is built, in which the mortar matrix is considered homogeneous. The aggregate phase is set as impermeable, and the chloride diffusion is assumed to take place only in the mortar matrix and the ITZs. The diffusion properties of the mortar matrix are determined based on the water/cement ratio, degree of hydration and porosity gradients away from aggregate particles. The transport equations are solved using the finite-element method, in which the three components are meshed separately and the continuity in fluxes at interfaces between them is applied. The present numerical model is validated against the available test data from the literature and compared with analytical results for ideal cases. Using the finite-element simulation method, a parametric study has been undertaken to understand the influences of the meso-structural parameters, including aggregate distribution, aggregate shape, diffusivity properties of the ITZ, water/cement ratio and aggregate content. The simulation results indicate that both aggregate distribution and aggregate shape have a negligible influence on chloride ingress in concrete, the diffusion properties of the ITZ and aggregate content have a significant impact, and the water/cement ratio has a marked effect. (C) 2014 Elsevier B.V. All rights reserved,

关键词:

Chloride diffusion Composites Concrete Finite element method Meso-scale

作者机构:

  • [ 1 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 2 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 3 ] [Ma, Guowei]Univ Western Australia, Sch Civil & Resource Engn, Perth, WA 6009, Australia

通讯作者信息:

  • 金浏

    [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FINITE ELEMENTS IN ANALYSIS AND DESIGN

ISSN: 0168-874X

年份: 2014

卷: 85

页码: 87-100

3 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:123

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 109

SCOPUS被引频次: 146

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:347/3673666
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司