收录:
摘要:
针对滚动轴承故障振动信号的非线性非平稳特性及强噪声特性,提出了一种基于局部均值分解(localmean decomposition,LMD)和奇异值差分谱的滚动轴承故障诊断方法.首先对原始信号进行LMD分解,得到若干乘积函数(product function,PF)分量,然后对故障特征明显的分量构建Hankel矩阵并进行奇异值分解,求出奇异值差分谱曲线,找到奇异值差分谱最大突变点来确定奇异值重构分量的个数,进而对包含故障特征频段的分量进行消噪和重构,再对重构信号进行Hilbert包络谱分析,提取故障特征.实验结果和工程应用表明:LMD和奇异值差分谱结合的信号特征提取方法,能准确、有效地提取滚动轴承的故障特征频率,对故障类型作出准确判断.
关键词:
通讯作者信息:
电子邮件地址: