Indexed by:
Abstract:
提出基于改进的在线多示例学习算法(Improved multiple instance learning,IMIL)的移动机器人目标跟踪方法.该方法利用射频识别系统(Radio frequency identification,RFID)粗定位IMIL算法的搜索区域,然后应用IMIL算法实现目标跟踪.该方法保证了机器人跟踪系统的连续性,解决了目标突然转弯时的跟踪问题.IMIL算法采用从低维空间提取的压缩特征描述包中示例,以降低算法耗时.通过最大化弱分类器与极大似然概率的内积,选择判别能力强的弱分类器,避免了弱分类器选择过程中多次计算包概率和示例概率,进一步提高算法的实时处理能力.计算包概率时该...
Keyword:
Reprint Author's Address:
Email:
Source :
自动化学报
Year: 2014
Issue: 12
Volume: 40
Page: 2916-2925
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: