Indexed by:
Abstract:
针对神经网络的结构设计,根据仿生学原理提出一种跨越-侧抑制神经网络(S-LINN).该多层网络结构引入了层内中间抑制神经元的侧向连接以及神经元在多个层内进行的信息传递.通过分析网络的逼近能力证明网络的学习能力,设计基于误差反向传播思想的梯度下降学习算法.通过鲍鱼年龄预测回归问题的仿真实验表明,S-LINN在处理实际回归问题时,不但能够保证较高训练精度,同时可获得更强的泛化能力.
Keyword:
Reprint Author's Address:
Email:
Source :
上海交通大学学报
ISSN: 1008-7095
Year: 2014
Issue: 7
Volume: 48
Page: 965-970
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: