Indexed by:
Abstract:
Although many efforts have been made to disclose the energy separation phenomenon based on theoretical numerical and experimental analysis in vortex tubes, it is still difficult to provide systematical information for designing vortex tubes due to the complexity of the physical process and the shortage of fully generally-applicable theory and methods. The purpose of current study was to search an effective method to predict the energy separation and flow behavior within a vortex tube. A three-dimensional computational fluid dynamic model together with the experimentally validated turbulence model is established and an experimental measurement is carried out using an optimal structure of vortex tube so as to validate the computational model. The flow characteristics including the total temperature and tangential velocity were obtained. The effects of cold fluid outlet diameter on the flow and temperature separation of a counter-flow vortex tube were investigated comprehensively. The streamlines with different cold fluid outlet diameters were presented and analyzed. A possible explanation for the cold fluid outlet diameter influences on the temperature difference between the cold fluid outlet and the hot fluid outlet were also given. (C) 2014 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED THERMAL ENGINEERING
ISSN: 1359-4311
Year: 2014
Issue: 1-2
Volume: 67
Page: 494-506
6 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:176
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 50
SCOPUS Cited Count: 64
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1