收录:
摘要:
In this paper we are concerned with the problems of variable selection and estimation in double generalized linear models in which both the mean and the dispersion are allowed to depend on explanatory variables. We propose a maximum penalized pseudo-likelihood method when the number of parameters diverges with the sample size. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and asymptotic properties of the resulting estimators are established. We also carry out simulation studies and a real data analysis to assess the finite sample performance of the proposed variable selection procedure, showing that the proposed variable selection method works satisfactorily.
关键词:
通讯作者信息:
电子邮件地址: