• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Jianhua (Guo, Jianhua.) | Wang, Shuying (Wang, Shuying.) (学者:王淑莹) | Wang, Zhongwei (Wang, Zhongwei.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

Scopus SCIE

摘要:

Understanding of the competition between floc-formers and filaments is critical to prevent filamentous bulking in practice. This study aimed to investigate the effects of feeding pattern and dissolved oxygen (DO) concentration on their competition in four sequencing batch reactors (SBRs). Short feeding under anoxic condition (fill time < 10 min) resulted in a well-settling sludge (sludge volume index (SVI) < 100 mL/g), in spite of DO concentrations. Sludge settleability deteriorated (SVI > 200 mL/g) and filamentous bulking was observed when the substrate was added in a limiting rate by prolonging the anoxic fill time up to 90 min. In contrast, sludge settleability in fully aerobic systems was quite poor (SVI > 500 mL/g) in spite of the feeding length. Compared to the systems with an anoxic fill phase, more types and abundant filamentous bacteria were identified in fully aerobic systems. Microscopic observation, staining reactions and fluorescence in situ hybridization analysis indicated that the extensive filaments, including Thiothrix nivea, Type 021N, Type 1851 and Microthrix parvicella, proliferated in fully aerobic systems. The results of this study indicated that substrate gradients played an important role on the competition between filaments and floc-formers. It is recommend the adoption of plug-flow selector configurations, with anoxic conditions in order to maintain good and robust sludge settleability. (C) 2014 Elsevier Ltd. All rights reserved.

关键词:

Sludge settleability Filamentous bacteria Filamentous bulking Activated sludge Dissolved oxygen (DO)

作者机构:

  • [ 1 ] [Guo, Jianhua]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Shuying]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Zhongwei]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF WATER PROCESS ENGINEERING

ISSN: 2214-7144

年份: 2014

卷: 1

页码: 108-114

7 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:749/3906797
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司