• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Wang, Li-Dan (Wang, Li-Dan.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

CPCI-S EI Scopus SCIE

摘要:

An approach, named extended extreme learning machine (ELM), is proposed for training the weights of a class of hierarchical feedforward neural network (HFNN). Unlike conventional single-hidden-layer feedforward networks (SLFNs), this hierarchical ELM (HELM) is based on the hierarchical structure which is capable of hierarchical learning of sequential information online, and one may simply choose hidden layers and then only need to adjust the output weights linking the hidden layer and the output layer. In such HELM implementations, the extended ELM provides better generalization performance during the learning process. Moreover, the proposed extended ELM method is efficient not only for HFNNs with sigmoid hidden nodes but also for HFNNs with radial basis function (RBF) hidden nodes. Finally, the HELM is applied to the activated sludge wastewater treatment processes (WWTPs) for predicting the water qualities. Experimental results and the performance comparison demonstrate the effectiveness of the proposed HELM. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

关键词:

Feedforward neural network Wastewater treatment process Hierarchical extreme learning machine Predicting water qualities

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Wang, Li-Dan]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China
  • [ 3 ] [Qiao, Jun-Fei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2014

卷: 128

页码: 128-135

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:188

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 36

SCOPUS被引频次: 42

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:507/3901815
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司