• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Hong (Zheng, Hong.) (学者:郑宏) | Xu, Dongdong (Xu, Dongdong.)

收录:

EI Scopus SCIE

摘要:

Aiming to solve, in a unified way, continuous and discontinuous problems in geotechnical engineering, the numerical manifold method introduces two covers, namely, the mathematical cover and the physical cover. In order to reach the goal, some issues in the simulation of crack propagation have to be solved, among which are the four issues to be treated in this study: (1) to reduce the rank deficiency induced by high degree polynomials as local approximation, a new variational principle is formulated, which suppresses the gradient-dependent DOFs; (2) to evaluate the integrals with singularity of 1/r, a new numerical quadrature scheme is developed, which is simpler but more efficient than the existing Duffy transformation; (3) to analyze kinked cracks, a sign convention for argument in the polar system at the crack tip is specified, which leads to more accurate results in a simpler way than the existing mapping technique; and (4) to demonstrate the mesh independency of numerical manifold method in handling strong singularity, a mesh deployment scheme is advised, which can reproduce all singular locations of the crack with regard to the mesh. Corresponding to the four issues, typical examples are given to demonstrate the effectiveness of the proposed schemes. Copyright (c) 2013 John Wiley & Sons, Ltd.

关键词:

1 numerical manifold method stress intensity factor physical cover r singularity mathematical cover kinked cracks mesh independency variational principle

作者机构:

  • [ 1 ] [Zheng, Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Dongdong]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China

通讯作者信息:

  • 郑宏

    [Zheng, Hong]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

ISSN: 0029-5981

年份: 2014

期: 13

卷: 97

页码: 986-1010

2 . 9 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:176

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 253

SCOPUS被引频次: 278

ESI高被引论文在榜: 37 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-11
  • 2019-9
  • 2018-11

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:861/3898408
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司