收录:
摘要:
THz technology has attracted great attention for decades of years. Among the wide research areas of THz technologies, vacuum electron terahertz radiation sources have obvious advantages in high power region. For the THz vacuum electro devices (VED), high current density electron beams with small dimensions are required. Nanosized scandia doped dispenser (SDD) cathodes have the capability to operate stably at pulsed current densities of over 100 A/cm(2) at 950 degrees C so it becomes the most promising cathodes to meet the requirements for THz VEDs. In this paper, we report a new approach for developing miniaturized electron beam sources on normal SDD cathodes. An electron beam of 400 mu m in diameter has been directly generated on an SDD cathode by deposition of a Zr/W double-layer anti-emission film and followed by a focused ion beam (FIB) milling. Results indicate that the electron beam is able to provide a space charge limited (SCL) current density of over 50 A/cm(2) at the operating temperature of 950 degrees C with proper laminarity and works stably for more than 1000 hours. The beam emission characteristics and the function of the anti-emission film have been discussed and related to the surface analysis results. The approach opens a new way for producing high emission mini-electron sources to satisfy the requirment of THz VEDs.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ACTA PHYSICA SINICA
ISSN: 1000-3290
年份: 2014
期: 5
卷: 63
1 . 0 0 0
JCR@2022
ESI学科: PHYSICS;
ESI高被引阀值:202
JCR分区:3
中科院分区:4