• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yan, Aijun (Yan, Aijun.) (学者:严爱军) | Wang, Weixian (Wang, Weixian.) | Zhang, Chunxiao (Zhang, Chunxiao.) | Zhao, Hui (Zhao, Hui.)

收录:

EI Scopus SCIE

摘要:

For the problem of predicting faults in the status of a shaft furnace, the missed alarm rate and false alarm rate have not been improved significantly by the traditional case-based reasoning (CBR) method. To predict faults more accurately, an improved CBR-based fault prediction method (ICBRP) is proposed in this paper. This ICBRP is composed of a water-filling theory-based weight allocation (WFA) model and a group decision-making-based revision (GDMR) model. According to the optimal allocation mechanism of channel power, a Lagrange function is designed to calculate the weights. Moreover, the credibility of historical results is used to revise the predicted results via the definition of a group utility function. Then, the proposed reasoning strategy can obtain more reasonable weights and take full advantage of comprehensive information from the retrieval results. Finally, the application results indicate that the proposed method is superior to traditional CBR and other methods. This proposed ICBRP significantly reduces the missed alarm rate and the false alarm rate of failure in the furnace status. (C) 2013 Elsevier Inc. All rights reserved.

关键词:

Fault prediction Shaft furnace status Case-based reasoning Group decision-making

作者机构:

  • [ 1 ] [Yan, Aijun]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Weixian]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Chunxiao]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Hui]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 严爱军

    [Yan, Aijun]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2014

卷: 259

页码: 269-281

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:188

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 52

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:179/4561085
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司