收录:
摘要:
为快速求解在线支撑向量回归算法,给出了一种基于Lagrangian支撑向量回归(LSVR)的在线增量学习算法.LSVR得到的无约束最优化问题可以采用快速迭代算法求解,该迭代算法可以从任何初始点收敛.LSVR求解时,在迭代开始只需要对阶数为输入样本数加一的矩阵求逆.在线增量LSVR学习算法在线性情况下采用S-M-W公式可以明显减少运算时间,在非线性情况下矩阵求逆充分利用了历史学习结果,减少了很多重复计算.通过在多个数据集上进行对比,实验结果表明:该算法与以前算法相比不仅保持了较好的精度,同时训练时间大大减少.
关键词:
通讯作者信息:
电子邮件地址: