• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Miao, Zhijia (Miao, Zhijia.) | Zeng, Wei (Zeng, Wei.) (学者:曾薇) | Wang, Shuying (Wang, Shuying.) (学者:王淑莹) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻) | Cao, Guihua (Cao, Guihua.) | Weng, Dongchen (Weng, Dongchen.) | Xue, Guisong (Xue, Guisong.) | Yang, Qing (Yang, Qing.)

收录:

EI Scopus SCIE CSCD

摘要:

Temperature is an important physical factor, which strongly influences biomass and metabolic activity. In this study, the effects of temperature on the anoxic metabolism of nitrite (NO2-) to nitrous oxide (N2O) by polyphosphate accumulating organisms, and the process of the accumulation of N2O (during nitrite reduction), which acts as an electron acceptor, were investigated using 91% +/- 4% Candidatus Accumulibacter phosphatis sludge. The results showed that N2O is accumulated when Accumulibacter first utilize nitrite instead of oxygen as the sole electron acceptor during the denitrifying phosphorus removal process. Properties such as nitrite reduction rate, phosphorus uptake rate, N2O reduction rate, and polyhydroxyalkanoate degradation rate were all influenced by temperature variation (over the range from 10 to 30 degrees C reaching maximum values at 25 degrees C). The reduction rate of N2O by N2O reductase was more sensitive to temperature when N2O was utilized as the sole electron acceptor instead of NO2, and the N2O reduction rates, ranging from 0.48 to 3.53 N2O-N/(hr.g VSS), increased to 1.45 to 8.60 mg N2O-N/(hr.g VSS). The kinetics processes for temperature variation of 10 to 30 degrees C were (theta(1) = 1.140-1.216 and theta(2) = 1.139-1.167). In the range of 10 degrees C to 30 degrees C, almost all of the anoxic stoichiometry was sensitive to temperature changes. In addition, a rise in N2O reduction activity leading to a decrease in N2O accumulation in long term operations at the optimal temperature (27 degrees C calculated by the Arrhenius model).

关键词:

denitrifying phosphorus removal kinetics N2O nitrite polyphosphate accumulating organisms stoichiometry temperature

作者机构:

  • [ 1 ] [Miao, Zhijia]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Zeng, Wei]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shuying]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Cao, Guihua]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 6 ] [Weng, Dongchen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 7 ] [Xue, Guisong]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 8 ] [Yang, Qing]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

通讯作者信息:

  • 曾薇

    [Zeng, Wei]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF ENVIRONMENTAL SCIENCES

ISSN: 1001-0742

年份: 2014

期: 2

卷: 26

页码: 264-273

6 . 9 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:211

JCR分区:2

中科院分区:4

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:338/3672255
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司