• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chai, Wei (Chai, Wei.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

In this paper, a new passive robust fault detection method is proposed. In virtue of its simple topological structure and universal approximation ability, the RBF neural network is utilized in the system identification for the fault detection. The set membership identification is used to calculate a set of uncertain weights which describes the model uncertainty. This set allows obtaining an adaptive threshold of the residual which is next applied to the robust fault detection. A model structure selection scheme which can delete the redundant hidden nodes is proposed to reduce the conservatism of the uncertain set. A narrower threshold can be generated owing to the contraction of uncertain set and therefore the fault detection sensitivity is increased. Three examples show the satisfying performance of the proposed robust fault detection method. (C) 2013 Elsevier Ltd. All rights reserved.

关键词:

Fault detection Model uncertainty Robustness Model structure selection Set membership RBF neural networks

作者机构:

  • [ 1 ] [Chai, Wei]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Chai, Wei]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

ISSN: 0952-1976

年份: 2014

卷: 28

页码: 1-12

8 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:176

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:311/3909307
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司