• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

张新峰 (张新峰.) | 焦月 (焦月.) | 李欢欢 (李欢欢.) | 卓力 (卓力.)

收录:

CQVIP PKU CSCD

摘要:

分类器的模型参数对分类结果有直接影响.针对引入无关样本的Universum SVM算法中模型参数选择问题,采用粒子群优化(particle swarm optimization,PSO)算法对其进行优化.该方法概念简单、计算效率高且受问题维数变化的影响较小,可实现对多个参数同时优选.此外,在PSO中粒子适应度函数的选择是一个关键问题.考虑k遍交叉验证法的估计无偏性,利用交叉验证误差作为评价粒子优劣的适应值.通过舌象样本数据实验,对参数优选前后测试样本识别正确率进行比较,实验结果验证了该算法的有效性.

关键词:

粒子群算法 参数选择 Universum SVM

作者机构:

  • [ 1 ] [张新峰]北京工业大学
  • [ 2 ] [焦月]北京工业大学
  • [ 3 ] [李欢欢]北京工业大学
  • [ 4 ] [卓力]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

北京工业大学学报

ISSN: 0254-0037

年份: 2013

期: 6

卷: 39

页码: 840-845

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 8

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:148/3918104
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司