• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Li (Zhang, Li.) | Liu, Han (Liu, Han.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻) | Zhang, Yanan (Zhang, Yanan.) | Sun, Qingxuan (Sun, Qingxuan.)

收录:

EI Scopus SCIE

摘要:

The characteristics of dissolved organic matter in river sediments, affected by microorganisms, are of great significance to water management strategies. Based on three-dimensional excitation and emission matrix fluorescence, ultravioletevisible spectroscopy, and high-throughput sequencing technology, this study jointly analyzed the composition and transformation mechanisms of dissolved organic matter as well as the microbial community structure in sediments of the Beiyun River, the main river within a basin with extreme water shortages. Moreover, we evaluated N and P contents in sediments to identify parameters to reflect potential eutrophication risks. Our results demonstrated that the content of dissolved organic matter in sediments was between 30.2 and 49.9 g/kg in the Tongzhou area of the Beiyun River. Humic substances were the largest components of dissolved organic matter in the sediments, followed by protein-like substances and soluble microbial byproducts. Furthermore, the proportion of humic matter decreased from upstream to downstream. The proportion of carbonyl, carboxyl, hydroxyl, and ester substituents on the aromatic structures of dissolved organic matter was significantly higher in the upstream, whereas the proportion of substances with aliphatic chain substituents on their aromatic structures was relatively low. The variation in downstream sediment microbial communities was much greater than that in the upstream (analyzed at the phylum level). Proteobacteria was the most abundant phylum (47.97%), which was closely related to the aromaticity of the dissolved organic matter in sediments. The N and P contents in the sediments of the Beiyun River were high and exhibited active transformation. The maximum fluorescence intensity of fulvic-acid-like components in the sediments [F-max(C4)] can indirectly reflect the potential risk of eutrophication in the Beiyun River. Therefore, our results provide a theoretical basis for the assessment of water quality and pollution control in the Beiyun River and other water-deficient regions worldwide. (C) 2020 Elsevier Ltd. All rights reserved.

关键词:

Sediment Water-deficient basin Dissolved organic matter (DOM) Microbial community Beiyun river

作者机构:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Han]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Yanan]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Sun, Qingxuan]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF CLEANER PRODUCTION

ISSN: 0959-6526

年份: 2020

卷: 277

1 1 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:697/4960558
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司