收录:
摘要:
该文基于语音信号的超矢量特征空间,提出了一种基于Fisher准则的可辨别性深度信念网络(discriminative deep belief network,DDBN)训练方法,得到了优于传统深度信念网络(deep belief network,DBN)的说话人码本矢量特征,并利用这些码本特征对多说话人的音段进行了聚类与分割.由TIMIT数据库生成的多说话人语音分割的实验结果表明,该基于Fisher准则函数的DDBN说话人分割算法的性能明显好于传统的Bayes信息判决(Bayesian information criterion,BIC)法和DBN法.
关键词:
通讯作者信息:
电子邮件地址: