• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

杨新武 (杨新武.) | 杨跃伟 (杨跃伟.) | 翟飞 (翟飞.)

收录:

CQVIP PKU CSCD

摘要:

为了提高步态识别率,在步态能量图(gait energy image,GEI)基础上,提出了基于小波包分解(waveletpacket decomposition,WPD)和完全主成分分析(two-directional two-dimensional principal component analysis,(2D)2PCA)的步态识别方法.该方法采用基于人体轮廓的GEI来解决步态数据量过大的问题,并采用WPD和(2D)2PCA进行步态特征提取,解决了已有基于小波变换的步态识别方法中高频分量丢失或维数过高问题.在NLPR步态数据库上对该方法进行了评测,并与经典方法进行了比较.实验结果表明:该方法具有更高的识别率和视角变化的鲁棒性.

关键词:

步态识别 完全主成分分析 小波包分解

作者机构:

  • [ 1 ] [杨新武]北京工业大学
  • [ 2 ] [杨跃伟]北京工业大学
  • [ 3 ] [翟飞]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

北京工业大学学报

ISSN: 0254-0037

年份: 2013

期: 7

卷: 39

页码: 1059-1064,1071

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 3

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:2259/3882317
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司