收录:
摘要:
In this paper, the bifurcations of subharmonic orbits are investigated for six-dimensional non-autonomous nonlinear systems using the improved subharmonic Melnikov method. The unperturbed system is composed of three independent planar Hamiltonian systems such that the unperturbed system has a family of periodic orbits. The key problem at hand is the determination of the sufficient conditions on some of the periodic orbits for the unperturbed system to generate the subharmonic orbits after the periodic perturbations. Using the periodic transformations and the Poincar, map, an improved subharmonic Melnikov method is presented. Two theorems are obtained and can be used to analyze the subharmonic dynamic responses of six-dimensional non-autonomous nonlinear systems. The subharmonic Melnikov method is directly utilized to investigate the subharmonic orbits of the six-dimensional non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate. Using the subharmonic Melnikov method, the bifurcation function of the subharmonic orbit is obtained. Numerical simulations are used to verify the analytical predictions. The results of the numerical simulation also indicate the existence of the subharmonic orbits for the laminated composite piezoelectric rectangular plate.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
NONLINEAR DYNAMICS
ISSN: 0924-090X
年份: 2014
期: 1-2
卷: 75
页码: 289-310
5 . 6 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:176
JCR分区:1
中科院分区:1
归属院系: