• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Liu, Zhijun (Liu, Zhijun.) | Zhang, Aidong (Zhang, Aidong.) | Yang, Cuicui (Yang, Cuicui.) | Liu, Chunnian (Liu, Chunnian.)

收录:

EI Scopus SCIE

摘要:

Mining functional modules in a protein-protein interaction (PPI) network contributes greatly to the understanding of biological mechanism, thus how to effectively detect functional modules in a PPI network has a significant application. In this paper, we present a hybrid approach using ant colony optimization and multi-agent evolution for detection functional modules in PPI networks. The proposed algorithm enhances the performance of ant colony optimization by incorporating multi-agent evolution for detecting functional modules. In the ant colony optimization process, a new heuristic, which merges topological characteristics with functional information function, is introduced to effectively conduct ants searching in finding optimal results. Thereafter, the multi-agent evolutionary process based on an energy function is performed to move out of local optima and obtain some enclosed connecting subgraphs which represent functional modules mined in a PPI network. Finally, systematic experiments have been conducted on four benchmark testing sets of yeast networks. Experimental results show that the hybrid approach is more effective compared to several other existing algorithms. (C) 2013 Elsevier B.V. All rights reserved.

关键词:

Functional module detection Protein-protein interaction network Ant colony optimization Computational biology Multi-agent evolutionary

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zhijun]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Cuicui]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Chunnian]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Aidong]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2013

卷: 121

页码: 453-469

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:1

中科院分区:3

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:306/3909302
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司