• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Atyabi, Adham (Atyabi, Adham.) | Luerssen, Martin H. (Luerssen, Martin H..) | Powers, David M. W. (Powers, David M. W..)

收录:

EI Scopus SCIE

摘要:

Subject transfer is a growing area of research in EEG aiming to address the lack of having enough EEG samples required for BCI by using samples originating from individuals or groups of subjects that previously performed similar tasks. This paper investigates the feasibility of two frameworks for enhancing subject transfer through a 90%+ reduction of EEG features and electrodes using Particle Swarm Optimization (PSO). In the first framework, electrodes and features selected by PSO from individual subjects are combined into a single "meta-mask" to be applied to the new subject. In the second framework, the preprocessed EEG of multiple subjects is concatenated into a single "super subject", from which PSO selects electrodes and features for use on the new subject. The study is focused on finding the optimal mixture of subjects in either of the proposed frameworks in addition to investigating the impact of various electrode and features selections. The results indicate the important role of having an optimal mixture of expertise in the subjects' data. (C) 2013 Elsevier B.V. All rights reserved.

关键词:

Brain computer interface Dimension reduction Electroencephalogram Particle swarm optimization Subject transfer

作者机构:

  • [ 1 ] [Atyabi, Adham]Flinders Univ S Australia, Sch Comp Sci Engn & Math CSEM, Adelaide, SA 5001, Australia
  • [ 2 ] [Luerssen, Martin H.]Flinders Univ S Australia, Sch Comp Sci Engn & Math CSEM, Adelaide, SA 5001, Australia
  • [ 3 ] [Powers, David M. W.]Flinders Univ S Australia, Sch Comp Sci Engn & Math CSEM, Adelaide, SA 5001, Australia
  • [ 4 ] [Powers, David M. W.]Beijing Univ Technol, Beijing Municipal Lab Multimedia & Intelligent So, Beijing, Peoples R China

通讯作者信息:

  • [Atyabi, Adham]Flinders Univ S Australia, Sch Comp Sci Engn & Math CSEM, Adelaide, SA 5001, Australia

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2013

卷: 119

页码: 319-331

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:136

JCR分区:1

中科院分区:3

被引次数:

WoS核心集被引频次: 28

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1020/3595705
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司