• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang Zhen (Yang Zhen.) (学者:杨震) | Wang Laitao (Wang Laitao.) | Fan Kefeng (Fan Kefeng.) | Lai Yingxu (Lai Yingxu.) (学者:赖英旭)

收录:

EI Scopus SCIE

摘要:

Exemplar-based clustering algorithm is very efficient to handle large scale and high dimensional data, while it does not require the user to specify many parameters. For current algorithms, however, are the inabilities to identify the optimal results or specify the number of clusters automatically. To remedy these, in this work, we propose and explore the idea of exemplar-based clustering analysis optimized by genetic algorithms, abbreviated as ECGA framework, which use genetic algorithms for optimizing and combining the results. First, an exemplar-based clustering framework based on canonical genetic algorithm is introduced. Then the framework is optimized with three new genetic operators: (1) Geometry operator which limits the typology distribution of exemplars based on pair-wise distances, (2) EM operator which apply EM (Expectation maximization) algorithm to generate children from previous population and (3) Vertex substitution operator which is initialized with genetic algorithm and select exemplars by using the variable neighborhood search meta-heuristic framework. Theoretical analysis proves the ECGA can achieve better chance to find the optimal clustering results. Experimental results on several synthetic and real data sets show our ECGA provide comparable or better results at the cost of slightly longer CPU time.

关键词:

Exemplar-based clustering Clustering analysis Genetic algorithms

作者机构:

  • [ 1 ] [Yang Zhen]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Wang Laitao]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Lai Yingxu]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Fan Kefeng]China Elect Standardizat Inst, Beijing 100007, Peoples R China

通讯作者信息:

  • 赖英旭

    [Lai Yingxu]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

CHINESE JOURNAL OF ELECTRONICS

ISSN: 1022-4653

年份: 2013

期: 4

卷: 22

页码: 735-740

1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:546/4955769
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司