• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Guangmeng (Zhang, Guangmeng.) | Liu, Zhongliang (Liu, Zhongliang.) (学者:刘中良) | Wang, Chen (Wang, Chen.)

收录:

EI Scopus SCIE

摘要:

The experimental results of boiling and condensation co-existing phase change heat transfer characteristics in a small confined space are presented. The working medium used is de-ionized water, the heating and cooling surfaces are polished copper. The confined space is a closed chamber that consists of a heating copper block whose top surface is used for boiling, a cooling copper block whose bottom surface is used for condensing and a circular wall made of stainless steel. The distance between the heating and cooling surfaces of the confined chamber is 26 mm, and the water layer thickness in the chamber is set at 10 mm, 12 mm, 14 mm and 16 mm, respectively. Experimental observation and results show that boiling and condensation processes are strongly inter-related and have significant influences over each other. As the water level increases, the boiling heat transfer coefficient increases at first and then decreases. Analysis of the standard deviations of the confined space pressure shows that as the heat flux increases, the pressure fluctuation increases first and then tends to maintain a constant. The experimental results also disclose that there exists an optimum water filling amount at which both the boiling and the condensation heat transfer coefficient acquire their maximum value. (C) 2013 Elsevier Ltd. All rights reserved.

关键词:

Boiling-condensation Confined space Experimental study Phase change heat transfer

作者机构:

  • [ 1 ] Beijing Univ Technol, Key Lab Heat Transfer & Energy Convers, Beijing Municipal Educ Comm, Coll Environm & Energy Engn, Beijing, Peoples R China

通讯作者信息:

  • 刘中良

    [Liu, Zhongliang]100 PingLeYuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

ISSN: 0017-9310

年份: 2013

卷: 64

页码: 1082-1090

5 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:131

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:325/2900989
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司