• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhan Zongcheng (Zhan Zongcheng.) | Liu Xiaojun (Liu Xiaojun.) | He Hong (He Hong.) (学者:何洪) | Song Liyun (Song Liyun.) | Li Jinzhou (Li Jinzhou.) | Ma Dongzhu (Ma Dongzhu.)

收录:

EI Scopus SCIE CSCD

摘要:

Pd/CeO2 catalysts with flower-like morphology were fabricated via an ultrasonic-assisted membrane reduction (UAMR) and hydrothermal methods. The catalysts were physically characterized and evaluated for three-way catalytic activities versus traditional Pd/CeO2 catalysts. Flower-like Pd/CeO2 catalysts exhibited a higher catalytic performance and better thermal stability than the Pd/CeO2 prepared by conventional impregnation. The flower-like Pd/CeO2 catalysts were constructed from 20-50 nm thick nanosheet petals. These petals were in turn constructed from 10 nm CeO2 nanoparticles that self-assembled into the flower-like morphology resulting in abundant pores in all directions. The Pd nanoparticles were anchored and dispersed on both the interior and surface of the pores and had minimal sintering. When these catalysts were aged, the structure and morphology of the catalysts remained unchanged with important industrial implications for this new type of material including improved catalytic performance and high thermal stability. Regardless of the Pd loading, both the fresh and aged Pd/CeO2 catalysts prepared by the UAMR-hydrothermal method exhibited better performance than the corresponding samples prepared by conventional impregnation means.

关键词:

flower-like morphology Pd nanoparticles rare earths three-way catalyst UAMR

作者机构:

  • [ 1 ] [Zhan Zongcheng]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu Xiaojun]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 3 ] [He Hong]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Song Liyun]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Li Jinzhou]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Ma Dongzhu]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 何洪

    [He Hong]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF RARE EARTHS

ISSN: 1002-0721

年份: 2013

期: 8

卷: 31

页码: 750-758

4 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:211

JCR分区:2

中科院分区:4

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:822/2981365
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司