• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Xiuli (Du, Xiuli.) (学者:杜修力) | Jin, Liu (Jin, Liu.) (学者:金浏) | Ma, Guowei (Ma, Guowei.)

收录:

EI Scopus SCIE

摘要:

Based on the meso-mechanical analysis model of concrete material, a meso-scale numerical approach is developed for the simulation of failure behavior and nonlinear mechanical properties of reinforced concrete members. The present meso-mechanical approach, i.e. so-called the meso-element equivalent method, is capable of capturing the important characteristic of concrete heterogeneity. Two reinforced concrete columns of different sizes subjected to uniaxial compression is simulated using both a macro-scale homogeneous and a meso-scale heterogeneous model to illustrate the rationality of the meso-scale approach. In the simulations, perfect bond between concrete and reinforcing steel is assumed. The meso-scale simulation results are compared with the macro-scale results as well as the experimental observations. Results of the simulation at the meso-scale are in good agreement with experiments in terms of the failure patterns and the global mechanical properties, which demonstrate the rationality and accuracy of the present meso-mechanical approach. The present meso-scale approach can well simulate not only the macroscopic mechanical properties of the two reinforced concrete columns but also their failure process, such as the buckling behavior of the longitudinal reinforcement, the necking fracture of the stirrups, the broken positions of concrete, etc. Besides that it can be concluded from the numerical results that the present meso-mechanical approach can be extended to investigate the size effect in reinforced concrete members.

关键词:

failure behavior heterogeneity meso-element equivalent method meso-scale reinforced concrete column Reinforced concrete members size effect

作者机构:

  • [ 1 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 2 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 3 ] [Ma, Guowei]Univ Western Australia, Sch Civil & Resource Engn, Perth, WA 6009, Australia

通讯作者信息:

  • 金浏

    [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF DAMAGE MECHANICS

ISSN: 1056-7895

年份: 2013

期: 6

卷: 22

页码: 878-904

4 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:131

JCR分区:2

中科院分区:2

被引次数:

WoS核心集被引频次: 108

SCOPUS被引频次: 83

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1255/2910503
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司