收录:
摘要:
针对MBR膜污染因子较为复杂且各因子之间相互交叉,提出基于PSO-BP神经网络的膜污染预测方法.首先用主成分分析法实现输入变量的去维和去相关,简化网络的输入,然后应用粒子群算法优化神经网络的权值和阈值.网络训练时使用的数据是在不同操作条件下,采用孔径为0.038μm的聚醚砜超滤膜处理印染废水溶液时得到的膜通量实验数据,最后用训练好的PSO-BP神经网络对膜通量进行预测.结果表明,与传统BP算法相比,PSO-BP神经网络算法能更快实现收敛,提高运算速度以及膜通量预测的准确度.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
北京工业大学学报
年份: 2012
期: 01
卷: 38
页码: 126-131