收录:
摘要:
Global bifurcations and multi-pulse chaotic dynamics are studied for a four-edge simply supported composite laminated piezoelectric rectangular plate under combined in-plane, transverse, and dynamic electrical excitations. Based on the von Karman type equations for the geometric nonlinearity and Reddy's third-order shear deformation theory, the governing equations of motion for a composite laminated piezoelectric rectangular plate are derived. The Galerkin method is employed to discretize the partial differential equations of motion to a three-degree-of-freedom nonlinear system. The six-dimensional non-autonomous nonlinear system is simplified to a three-order standard form by using the method of normal form. The extended Melnikov method is improved to investigate the six-dimensional non-autonomous nonlinear dynamical system in mixed coordinate. The global bifurcations and multi-pulse chaotic dynamics of the composite laminated piezoelectric rectangular plate are studied by using the improved extended Melnikov method. The multi-pulse chaotic motions of the system are found by using numerical simulation, which further verifies the result of theoretical analysis.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
NONLINEAR DYNAMICS
ISSN: 0924-090X
年份: 2013
期: 1-2
卷: 73
页码: 1005-1033
5 . 6 0 0
JCR@2022
ESI学科: ENGINEERING;
JCR分区:1
中科院分区:2
归属院系: