• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Wei (Ma, Wei.) | Gong, Chaofan (Gong, Chaofan.) | Xu, Shibiao (Xu, Shibiao.) | Zhang, Xiaopeng (Zhang, Xiaopeng.)

收录:

EI Scopus SCIE

摘要:

The good fusion of multi-scale features obtained by Convolutional neural networks (CNNs) is key to semantic edge detection; however, obtaining fusion is challenging. This paper presents a Multi-scale Spatial Context-based deep network for Semantic Edge Detection (MSC-SED). Different from state-of-the-art methods, MSC-SED gradually fuses multi-scale low-to-high level CNN features in an end-to-end architecture. This fusion structure obtains rich multi-scale features while enhancing the details of higher-level features. Beside the overall structure, we present the following two functional modules: the Context Aggregation Module (CAM) and Location-Aware fusion Module (LAM). The CAM helps to enrich context in features at each stage, before and after fusion. The LAM helps to selectively integrate lower-level features. The proposed method outperforms state-of-the-art approaches in terms of both the edge quality and the accuracy of edge categorization on both the SBD and Cityscapes datasets.

关键词:

Gradual fusion Semantic edge detection Convolutional neural network Location-aware information fusion Multi-scale feature fusion

作者机构:

  • [ 1 ] [Ma, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Gong, Chaofan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Shibiao]Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
  • [ 4 ] [Zhang, Xiaopeng]Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China

通讯作者信息:

  • [Xu, Shibiao]Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INFORMATION FUSION

ISSN: 1566-2535

年份: 2020

卷: 64

页码: 238-251

1 8 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 20

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:150/3775420
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司