• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

张昭昭 (张昭昭.) | 乔俊飞 (乔俊飞.) (学者:乔俊飞)

收录:

CQVIP PKU CSCD

摘要:

以设计最小径向基函数(RBF)神经网络结构为着眼点,提出一种在线RBF网络结构设计算法.该算法将在线减法聚类能实时跟踪工况的特性与RBF网络参数学习过程相结合,使得网络既能在线适应实时对象的变化又能维持紧凑的结构,有效地解决了RBF神经网络结构自组织问题.该算法只调整欧氏距离距实时工况最近的核函数,大大提高了网络的学习速度.通过对典型非线性函数逼近和混沌时间序列预测的仿真,表明所提出的算法具有良好的动态特性响应能力和逼近能力.

关键词:

RBF神经网络 在线减法聚类 结构设计

作者机构:

  • [ 1 ] [张昭昭]北京工业大学
  • [ 2 ] [乔俊飞]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

控制与决策

ISSN: 1001-0920

年份: 2012

期: 7

卷: 27

页码: 997-1002

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 33

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:523/3651907
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司