• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Xiaoying (Tang, Xiaoying.) | Xia, Li (Xia, Li.) | Liao, Yezi (Liao, Yezi.) | Liu, Weifeng (Liu, Weifeng.) | Peng, Yuhua (Peng, Yuhua.) | Gao, Tianxin (Gao, Tianxin.) | Zeng, Yanjun (Zeng, Yanjun.)

收录:

Scopus SCIE

摘要:

A new nonlinear approach is presented for high-frequency electrocorticography (ECoG)-based diagnosis of epilepsy. The ECoG data from 3 patients with epilepsy are analyzed in this study. A recently developed algorithm in graph theory, visibility graph (VG), is applied in this research. The approach is based on the key discovery that high-frequency oscillation takes place during epileptic seizure, making it a marker of epilepsy. Therefore, the nonlinear property of the high-frequency signal may be more noticeable. Hence, a complexity measure, called graph index complexity (GIC), is computed using the VG of the patients' high-frequency ECoG subband. After comparison and statistical analysis, the nonlinear feature is proved to be effective in detection and location of the epilepsy. Two different traditional complexities, sample entropy and Lempel-Ziv, were also calculated to make a comparison and prove that GIC provides better identification.

关键词:

complexity ECoG epilepsy visual graph

作者机构:

  • [ 1 ] [Tang, Xiaoying]Beijing Inst Technol, Sch Life Sci & Technol, Beijing 100081, Peoples R China
  • [ 2 ] [Xia, Li]Beijing Inst Technol, Sch Life Sci & Technol, Beijing 100081, Peoples R China
  • [ 3 ] [Liao, Yezi]Beijing Inst Technol, Sch Life Sci & Technol, Beijing 100081, Peoples R China
  • [ 4 ] [Liu, Weifeng]Beijing Inst Technol, Sch Life Sci & Technol, Beijing 100081, Peoples R China
  • [ 5 ] [Peng, Yuhua]Beijing Inst Technol, Sch Life Sci & Technol, Beijing 100081, Peoples R China
  • [ 6 ] [Gao, Tianxin]Beijing Inst Technol, Sch Life Sci & Technol, Beijing 100081, Peoples R China
  • [ 7 ] [Zeng, Yanjun]Beijing Univ Technol, Biomech & Med Informat Inst, Beijing, Peoples R China

通讯作者信息:

  • [Peng, Yuhua]Beijing Inst Technol, Sch Life Sci & Technol, Beijing 100081, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CLINICAL EEG AND NEUROSCIENCE

ISSN: 1550-0594

年份: 2013

期: 2

卷: 44

页码: 150-156

2 . 0 0 0

JCR@2022

ESI学科: NEUROSCIENCE & BEHAVIOR;

ESI高被引阀值:224

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:238/3656105
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司