收录:
摘要:
Tetralogy of Fallot is the most common cyanotic congenital heart defect. For severe cases, inserting a systemic to pulmonary shunt, which distributes part of systemic artery blood into the pulmonary artery, is the preferable palliative surgery. Based on the computed tomography images and three-dimensional geometry technologies, two patient-specific anatomical options of systemic to pulmonary shunts including the aorta to pulmonary shunt (APS) and innominate artery to pulmonary shunt (IPS) have been simulated for computational fluid dynamics. The objective of this study was to predict the hemodynamics within the shunts and con firm, through patient-specific simulations, the shunt with the optimal performance. Results indicated that both options created high velocity gradients and pressure gradients at the proximal end of the shunts. Obvious flow recirculation appeared at the inner region near the proximal end of the shunts. Part of the reverse flow from the descending aorta, left subclavian artery, left carotid artery and innominate artery was driven into the shunts during the diastolic period. The IPS provided better balanced and more adequate blood flow distributions between the systemic and pulmonary circulations. The APS provided slightly excessive pulmonary blood flow which can ultimately result in cardiac failure and pulmonary hypertension.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY
ISSN: 0219-5194
年份: 2013
期: 1
卷: 13
0 . 8 0 0
JCR@2022
ESI学科: MOLECULAR BIOLOGY & GENETICS;
JCR分区:4
中科院分区:4
归属院系: