• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hou, Cuiqin (Hou, Cuiqin.) | Jiao, Licheng (Jiao, Licheng.) | Hou, Yibin (Hou, Yibin.) (学者:侯义斌)

收录:

EI Scopus SCIE

摘要:

In networked data, linked objects tend to belong to the same class, and densely linked sub-graphs are often available. Based on these facts, this paper presents a regularization framework that consists of fitting and regularization terms for transductive learning in networked data. The desirable value of the fitting term is related to the number of labeled data, whereas that of the regularization term is dependent on the structure of the graph. The ratio of these two desirable values is essential for the estimation of the optimal regularization parameters, such as that proposed in our paper. Under the proposed regularization framework, an effective classification algorithm is developed. Two methods are also introduced to incorporate contents of objects into the proposed framework to ultimately improve classification accuracy. Promising experimental results are reported on a toy problem and a paper classification task. (C) 2012 Elsevier Inc. All rights reserved.

关键词:

Regularization parameter Transductive learning Regularization framework Networked data

作者机构:

  • [ 1 ] [Hou, Cuiqin]Xidian Univ, Inst Intelligent Informat Proc, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
  • [ 2 ] [Jiao, Licheng]Xidian Univ, Inst Intelligent Informat Proc, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
  • [ 3 ] [Hou, Cuiqin]Beijing Univ Technol, Embedded Software & Syst Inst, Beijing 100124, Peoples R China
  • [ 4 ] [Hou, Yibin]Beijing Univ Technol, Embedded Software & Syst Inst, Beijing 100124, Peoples R China

通讯作者信息:

  • [Hou, Cuiqin]Xidian Univ, Inst Intelligent Informat Proc, Minist Educ China, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2013

卷: 221

页码: 262-273

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:68/4302231
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司