• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Zhen (Zhang, Zhen.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Ding, Wenpeng (Ding, Wenpeng.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Compressive sensing (CS) theory, which has been widely used in magnetic resonance (MR) image processing, indicates that a sparse signal can be reconstructed by the optimization programming process from non-adaptive linear projections. Since MR Images commonly possess a blocky structure and have sparse representations under certain wavelet bases, total variation (TV) and wavelet domain norm regularization are enforced together (TV-wavelet Ll method) to improve the recovery accuracy. However, the components of wavelet coefficients are different: low-frequency components of an image, that carry the main energy of the MR image, perform a decisive impact for reconstruction quality. In this paper, we propose a TV and wavelet L2-L1 model (TVWL2-L1) to measure the low frequency wavelet coefficients with 2 norm and high frequency wavelet coefficients with l(1) norm. We present two methods to approach this problem by operator splitting algorithm and proximal gradient algorithm. Experimental results demonstrate that our method can obviously improve the quality of MR image recovery comparing with the original TV-wavelet method. (C) 2012 Elsevier Inc. All rights reserved.

关键词:

Convex optimization MR image reconstruction Compressive sensing Wavelet transform Total variation

作者机构:

  • [ 1 ] [Zhang, Zhen]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Shi, Yunhui]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ding, Wenpeng]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 施云惠

    [Shi, Yunhui]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

ISSN: 1047-3203

年份: 2013

期: 2

卷: 24

页码: 187-195

2 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:207/3890786
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司