• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hao, Bo (Hao, Bo.) | Yan, Yong (Yan, Yong.) | Wang, Xiaobo (Wang, Xiaobo.) | Chen, Ge (Chen, Ge.) (学者:陈戈)

收录:

EI Scopus SCIE PubMed

摘要:

We fabricated a sandwich-like branched-polyethyleneimine (b-PEI)/TiO2/Au/graphene oxide (GO) nanocomposite through a biomimetic layer-by-layer co-mineralization approach, and the polymer b-PEI was believed to act as both an inducing agent for the hydrolysis of titanium bis(ammonium lactato)dihydroxide (Ti-BALDH) and a reducing agent for the reduction of HAuCl4 in the synthetic procedure. Upon organic pyrolysis in air at 500 degrees C, a TiO2/Au nanosheet was formed; and gold nanocrystals were observed uniformly dispersed on TiO2 nanosheet. Moreover, the obtained TiO2/Au nanosheets demonstrated an enhanced lithium storage performance when they are used as anode materials for lithium ion batteries (LIBs), particularly, a high capacity of 205 mA h g(-1) and 189 mA h g(-1) was obtained at 5 C and 10 C rate, respectively, indicating the high rate capability of the material. The greatly improved rate performance might be attributed from both the sheet-like nanostructure and the existence of uniformly dispersed gold nanocrystals, which facilitate electron transfer and lithium ions diffusion in the material. The result suggests that the TiO2 electrode performance can be improved through a design of sheet-like nanocomposites using a bio-inspired route, which is desirable for both "green synthesis" and application for high power LIBs, moreover, such a benign bio-inspired route can be developed into a general pathway to synthesize many other TiO2 based nanocomposites for broad applications in the fields of batteries, photoelectrochemistry, photocatalysis and dye-sensitized solar cells.

关键词:

作者机构:

  • [ 1 ] [Hao, Bo]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Yong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Xiaobo]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Ge]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 陈戈

    [Chen, Ge]Beijing Univ Technol, Coll Environm & Energy Engn, Pingleyuan 100, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NANOSCALE

ISSN: 2040-3364

年份: 2013

期: 21

卷: 5

页码: 10472-10480

6 . 7 0 0

JCR@2022

ESI学科: PHYSICS;

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 25

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:578/4289246
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司