• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Xing, Xinying (Xing, Xinying.) | Yao, Yao (Yao, Yao.) | Li, Junwei (Li, Junwei.) | Zhang, Xiaodan (Zhang, Xiaodan.)

收录:

EI Scopus SCIE

摘要:

Deep learning based human brain network classification has gained increasing attention in recent years. However, current methods remain limited in exploring the topological structure information of a brain network. In this paper, we propose a kind of new convolutional kernels with an element-wise weighting mechanism (CKEW) to extract hierarchical topological features of brain networks, in which each weight is assigned to an element with a unique neuroscientific meaning. In addition, a novel classification framework based on CKEW is presented to diagnose brain diseases and explore the most important original features by a tracing feature analysis method efficiently. Experimental results on two autism spectrum disorder (ASD) datasets and an attention deficit hyperactivity disorder (ADHD) dataset with functional magnetic resonance imaging (fMRI) data demonstrate that our method can more accurately distinguish subject groups compared to several state-of-the-art methods in cerebral disease classification, and abnormal connectivity patterns and brain regions identified are more likely to become biomarkers associated with a cerebral disease. (C) 2020 Elsevier Ltd. All rights reserved.

关键词:

Topological features Element-wise weighting mechanism Abnormal connectivity patterns Brain network classification Convolutional kernels

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Xing, Xinying]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Yao, Yao]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Junwei]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Xiaodan]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION

ISSN: 0031-3203

年份: 2021

卷: 109

8 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 13

在线人数/总访问数:410/3904759
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司