• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yao, Minghui (Yao, Minghui.) | Zhang, Wei (Zhang, Wei.) (学者:张伟) | Zu, Jean W. (Zu, Jean W..)

收录:

EI Scopus SCIE

摘要:

This paper investigates the multi-pulse global heteroclinic bifurcations and chaotic dynamics for nonlinear, nonplanar oscillations of the parametrically excited viscoelastic moving belts by using an extended Melnikov method in the resonant case. Applying the method of multiple scales, the Galerkin's approach and the theory of normal form, the explicit normal form is obtained for the case of 1:1 internal resonance and primary parametric resonance. Studies are performed for the heteroclinic bifurcations of the unperturbed system and for the characteristics of the hyperbolic dynamics of the dissipative system, respectively. The extended Melnikov method is used to investigate the Shilnikov type multi-pulse bifurcations and chaotic dynamics of the viscoelastic moving belt. Based on the investigation, the geometric structure of the multi-pulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multi-pulse chaotic motions can occur. Furthermore, numerical simulations lead to the discovery of the new shapes of chaotic motion. Overall, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists.

关键词:

chaotic dynamics multi-pulse heteroclinic orbit extended Melnikov method parametric excitation Viscoelastic moving belt

作者机构:

  • [ 1 ] [Yao, Minghui]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zu, Jean W.]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zu, Jean W.]Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada

通讯作者信息:

  • 张伟

    [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS

ISSN: 0218-1274

年份: 2013

期: 1

卷: 23

2 . 2 0 0

JCR@2022

ESI学科: MATHEMATICS;

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1125/3859440
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司