收录:
摘要:
This paper investigates the multi-pulse global heteroclinic bifurcations and chaotic dynamics for nonlinear, nonplanar oscillations of the parametrically excited viscoelastic moving belts by using an extended Melnikov method in the resonant case. Applying the method of multiple scales, the Galerkin's approach and the theory of normal form, the explicit normal form is obtained for the case of 1:1 internal resonance and primary parametric resonance. Studies are performed for the heteroclinic bifurcations of the unperturbed system and for the characteristics of the hyperbolic dynamics of the dissipative system, respectively. The extended Melnikov method is used to investigate the Shilnikov type multi-pulse bifurcations and chaotic dynamics of the viscoelastic moving belt. Based on the investigation, the geometric structure of the multi-pulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multi-pulse chaotic motions can occur. Furthermore, numerical simulations lead to the discovery of the new shapes of chaotic motion. Overall, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
ISSN: 0218-1274
年份: 2013
期: 1
卷: 23
2 . 2 0 0
JCR@2022
ESI学科: MATHEMATICS;
JCR分区:2
中科院分区:3
归属院系: