• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shi, Gongming (Shi, Gongming.) | Du, Jiang (Du, Jiang.) (学者:杜江) | Sun, Zhihua (Sun, Zhihua.) | Zhang, Zhongzhan (Zhang, Zhongzhan.) (学者:张忠占)

收录:

Scopus SCIE

摘要:

The functional linear quantile regression model is widely used to characterize the relationship between a scalar response and a functional covariate. Most existing research results are based on a correct assumption that the response is related to the functional predictor through a linear model for given quantile levels. This paper focuses on investigating the adequacy check of the functional linear quantile regression model. We propose a nonparametric U-process test statistic based on the functional principal component analysis. It is proved that the test statistic follows a normal distribution asymptotically under the null hypothesis and diverges to infinity for any misspecified models. Therefore, the test is consistent against any fixed alternative. Moreover, it is shown that the test has asymptotic power one for the, local alternative hypothetical models converging to the null hypothesis at the rates n(-1/2). The finite sample properties of the test statistic are illustrated through extensive simulation studies. A real data set of 24 hourly measurements of ozone levels in Sacramento, California is analyzed by the proposed test. (C) 2020 Elsevier B.V. All rights reserved.

关键词:

Quantile regression Hypothesis test Kernel smoothing Functional linear models

作者机构:

  • [ 1 ] [Shi, Gongming]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 2 ] [Du, Jiang]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 3 ] [Zhang, Zhongzhan]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 4 ] [Sun, Zhihua]Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China

通讯作者信息:

  • 张忠占

    [Zhang, Zhongzhan]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF STATISTICAL PLANNING AND INFERENCE

ISSN: 0378-3758

年份: 2021

卷: 210

页码: 64-75

0 . 9 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:31

JCR分区:4

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:694/3898539
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司