• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Rong, Y. (Rong, Y..) | Hao, D. (Hao, D..) | Han, X. (Han, X..) | Zhang, Y. (Zhang, Y..) (学者:张勇) | Zhang, J. (Zhang, J..) | Zeng, Y. (Zeng, Y..)

收录:

Scopus SCIE

摘要:

The aim of our study was to recognize results of surface electromyography (sEMG) recorded under conditions of a maximum voluntary contraction (MVD) and fatigue states using wavelet packet transform and energy analysis. The sEMG signals were recorded in 10 young men from the right upper limb with a handgrip. sEMG signals were decomposed by wavelet packet transform, and the corresponding energies of certain frequencies were normalized as feature vectors. A back-propagation neural network, a support vector machine (SVM), and a genetic algorithm-based SVM (GA-SVM) worked as classifiers to distinguish muscle states. The results showed that muscle fatigue and MVC could be identified by level-4 wavelet packet transform and GA-SVM more accurately than when using other approaches. The classification correct rate reached 97.3% with seven fold cross-validation. The proposed method can be used to adequately reflect the muscle activity.

关键词:

back-propagation neural network genetic algorithm support vector machine surface electromyography wavelet packet transform

作者机构:

  • [ 1 ] [Rong, Y.]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China
  • [ 2 ] [Hao, D.]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China
  • [ 3 ] [Zhang, Y.]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China
  • [ 4 ] [Zhang, J.]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China
  • [ 5 ] [Zeng, Y.]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China
  • [ 6 ] [Han, X.]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China

通讯作者信息:

  • [Hao, D.]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEUROPHYSIOLOGY

ISSN: 0090-2977

年份: 2013

期: 1

卷: 45

页码: 39-48

0 . 5 0 0

JCR@2022

ESI学科: NEUROSCIENCE & BEHAVIOR;

ESI高被引阀值:224

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:909/3621929
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司