• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Xiaoqi (Huang, Xiaoqi.) | Han, Honggui (Han, Honggui.) (学者:韩红桂) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE PubMed

摘要:

Wastewater treatment must satisfy discharge requirements under specified constraints and have minimal operating costs (OC). The operating results of wastewater treatment processes (WWTPs) have significantly focused on both the energy consumption (EC) and effluent quality (EQ). To reflect the relationship between the EC and EQ of WWTPs directly, an extended Elman neural networkbased energy consumption model (EENN-ECM) was studied for WWTP control in this paper. The proposed EENN-ECM was capable of predicting EC values in the treatment process. Moreover, the self-adaptive characteristic of the EENN ensured the modeling accuracy. A performance demonstration was carried out through a comparison of the EC between the benchmark simulation model No. 1 (BSM1) and the EENN-ECM. The experimental results demonstrate that this EENN-ECM is more effective to model the EC of WWTPs.

关键词:

operating costs wastewater treatment process energy consumption model effluent quality extended Elman neural network

作者机构:

  • [ 1 ] [Huang, Xiaoqi]Beijing Univ Technol, Intelligent Syst Inst, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Honggui]Beijing Univ Technol, Intelligent Syst Inst, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Intelligent Syst Inst, Coll Elect & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Honggui]Beijing Univ Technol, Intelligent Syst Inst, Coll Elect & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

WATER SCIENCE AND TECHNOLOGY

ISSN: 0273-1223

年份: 2013

期: 3

卷: 67

页码: 667-674

2 . 7 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:886/4281086
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司